Reconstructing annual XCO2 at a 1 km×1 km spatial resolution across China from 2012 to 2019 based on a spatial CatBoost method

Environ Res. 2023 Nov 1;236(Pt 2):116866. doi: 10.1016/j.envres.2023.116866. Epub 2023 Aug 9.

Abstract

Long-time-series, high-resolution datasets of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) have great practical importance for mitigating the greenhouse effect, assessing carbon emissions and implementing a low-carbon cycle. However, the mainstream XCO2 datasets obtained from satellite observations have coarse spatial resolutions and are inadequate for supporting research applications with different precision requirements. Here, we developed a new spatial machine learning model by fusing spatial information with CatBoost, called SCatBoost, to fill the above gap based on existing global land-mapped 1° XCO2 data (GLM-XCO2). The 1-km-spatial-resolution dataset containing XCO2 values in China from 2012 to 2019 reconstructed by SCatBoost has stronger and more stable predictive power (confirmed with a cross-validation (R2 = 0.88 and RSME = 0.20 ppm)) than other traditional models. According to the estimated dataset, the overall national XCO2 showed an increasing trend, with the annual mean concentration rising from 392.65 ppm to 410.36 ppm. In addition, the spatial distribution of XCO2 concentrations in China reflects significantly higher concentrations in the eastern coastal areas than in the western inland areas. The contributions of this study can be summarized as follows: (1) It proposes SCatBoost, integrating the advantages of machine learning methods and spatial characteristics with a high prediction accuracy; (2) It presents a dataset of fine-scale and high resolution XCO2 over China from 2012 to 2019 by the model of SCatBoost; (3) Based on the generated data, we identify the spatiotemporal trends of XCO2 in the scale of nation and city agglomeration. These long-term and high resolution XCO2 data help understand the spatiotemporal variations in XCO2, thereby improving policy decisions and planning about carbon reduction.

Keywords: China; High resolution; SCatBoost; Spatial characteristics; Temporal variations; XCO(2).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Environmental Monitoring* / methods