Short communication: Predicting blood plasma non-esterified fatty acid and beta-hydroxybutyrate concentrations from cow milk-addressing systematic issues in modelling

Animal. 2023 Sep;17(9):100912. doi: 10.1016/j.animal.2023.100912. Epub 2023 Jul 13.

Abstract

Negative energy status in early lactation is linked to a variety of metabolic disorders, reduced fertility, and decreased milk production. To improve the energy status of cows by breeding and management, the identification of negative energy status is crucial. While biomarkers such as non-esterified fatty acid (NEFA) concentration and beta-hydroxybutyrate (BHB) in blood plasma could be used to identify a negative energy state, measuring them directly from blood is both invasive and expensive. In this work, we developed prediction equations for blood plasma NEFA and BHB levels based on mid-IR spectral measurements of milk. The models were fitted using partial least squares regression and evaluated using both cross-validation and independent-herd validation. A total of 3 183 spectral records from 606 lactations originating from three different herds were utilised. R2 values of 0.53 (RMSE = 0.206 mmol/l, RMSE of cross-validation (RMSECV) 0.217 mmol/l) for NEFA and 0.63 (RMSE = 0.326 mmol/l, RMSECV = 0.353 mmol/l) for BHB were obtained. Furthermore, relatively similar prediction accuracies were found for BHB (RMSE of prediction (RMSEP) 0.411 mmol/l and 0.422 mmol/l) and NEFA (RMSEP = 0.186 mmol/l and 0.221 mmol/l) when model training was done using two herds and validated on the third herd. The results from the model fits confirm that it is possible to build blood plasma BHB and NEFA models based on mid-IR spectra that are sufficiently accurate for practical use.

Keywords: Biomarkers; Breeding; Negative energy status; Nordic Red dairy cattle; Partial least squares.

MeSH terms

  • 3-Hydroxybutyric Acid
  • Animals
  • Cattle
  • Fatty Acids, Nonesterified*
  • Female
  • Lactation
  • Milk* / metabolism
  • Plasma

Substances

  • Fatty Acids, Nonesterified
  • 3-Hydroxybutyric Acid