Three Isomeric Tetraphenylethylene-pyridine Compounds: Synthesis, Crystal Structures, and Photophysical Properties

Chem Asian J. 2023 Sep 15;18(18):e202300600. doi: 10.1002/asia.202300600. Epub 2023 Aug 22.

Abstract

Many aggregation-induced emission (AIE) molecules based on tetraphenylethylene (TPE) structure have been synthesized, but a clear understanding of the photophysical difference between different isomeric pyridyl-based tetraphenylethylene molecules remains elusive. Herein, we designed a series of isomeric tetraphenylethylene-pyridines (o-Py-TPE, m-Py-TPE, p-Py-TPE) to investigate the influence of the position of N atoms in the pyridine subunit on the photophysical property of the whole molecule by detailed DFT calculations and single-crystal structures analysis. All compounds show typical AIE properties, and notably, the meta pyridyl isomer (m-Py-TPE) shows the highest solid photoluminescence quantum yield (PLQY) up to 64.56 %. Further investigation and DFT calculations indicate that the center C=C bond dihedral angles of the TPE subunit in the solid state of these compounds, which are affected by C-H⋅⋅⋅π interaction, play a vital role in their emission and PLQY properties. This work provides underlying principles for the design of pyridyl-based TPE molecules with high photoluminescent performance in the future.

Keywords: AIE; DFT; Photoluminescence quantum yield; pyridine-based TPE; single crystal structures.