Ecological differentiation and assembly processes of abundant and rare bacterial subcommunities in karst groundwater

Front Microbiol. 2023 Jul 25:14:1111383. doi: 10.3389/fmicb.2023.1111383. eCollection 2023.

Abstract

The ecological health of karst groundwater has been of global concern due to increasing anthropogenic activities. Bacteria comprising a few abundant taxa (AT) and plentiful rare taxa (RT) play essential roles in maintaining ecosystem stability, yet limited information is known about their ecological differentiation and assembly processes in karst groundwater. Based on a metabarcoding analysis of 64 groundwater samples from typical karst regions in southwest China, we revealed the environmental drivers, ecological roles, and assembly mechanisms of abundant and rare bacterial communities. We found a relatively high abundance of potential functional groups associated with parasites and pathogens in karst groundwater, which might be linked to the frequent regional anthropogenic activities. Our study confirmed that AT was dominated by Proteobacteria and Campilobacterota, while Patescibacteria and Chloroflexi flourished more in the RT subcommunity. The node-level topological features of the co-occurrence network indicated that AT might share similar niches and play more important roles in maintaining bacterial community stability. RT in karst groundwater was less environmentally constrained and showed a wider environmental threshold response to various environmental factors than AT. Deterministic processes, especially homogeneous selection, tended to be more important in the community assembly of AT, whereas the community assembly of RT was mainly controlled by stochastic processes. This study expanded our knowledge of the karst groundwater microbiome and was of great significance to the assessment of ecological stability and drinking water safety in karst regions.

Keywords: abundant and rare taxa; assembly processes; bacterial community; environmental thresholds; karst groundwater.

Grants and funding

Financial support was from the National Natural Science Foundation of China under Grant Nos. 51721006 and 91647211.