Effect of increased intake of concentrates and sodium butyrate supplementation on ruminal epithelium structure and function in growing rams

Animal. 2023 Nov;17(11):100898. doi: 10.1016/j.animal.2023.100898. Epub 2023 Jun 28.

Abstract

Increased ruminal butyrate production is considered to have a positive impact on rumen epithelium growth and function. However, excessive ruminal butyrate production may affect the rumen negatively, particularly when the rumen is already challenged with low pH. The aim of this study was to determine the effect of the inclusion of concentrates in the diet and sodium butyrate (SB) supplementation on ruminal epithelium growth and function in growing rams. Forty-two rams (27.8 ± 7.3 kg; 9-14 months of age) were allocated into six treatments and fed a diet with low (22.5% of diet DM; LOW) or high (60% of diet DM; HIGH) inclusion of concentrates in combination with no (SB0), 1.6% (SB1.6) or 3.2% (SB3.2) of diet DM inclusion of SB. There was no impact of the investigated factors on papilla dimensions and mucosa surface area, either in the atrium ruminis or ventral rumen (P ≥ 0.11). Stratum corneum thickness was higher for HIGH compared to LOW treatments (P ≤ 0.04), independently of the location in the rumen. In the atrium ruminis, the epithelium and living strata thickness quadratically increased due to SB supplementation for LOW treatments but quadratically decreased for HIGH treatments (concentrate inclusion × butyrate supplementation interaction; P ≤ 0.03); conversely, in the ventral sac of the rumen, a thicker epithelium was observed due to both increased concentrate inclusion in the diet and SB supplementation (P < 0.01) but living strata thickness was increased only by SB supplementation (linear effect; P < 0.01). The epithelium damage index in the ventral sac of the rumen was higher for LOW compared to HIGH treatments (P = 0.02). Increased inclusion of concentrates in the diet increased mRNA expression of monocarboxylate transporter 1 in both the epithelium of the atrium ruminis and ventral rumen, occludin in the epithelium of the atrium ruminis and downregulated in adenoma in the epithelium of the ventral rumen (P ≤ 0.02). Protein expression of claudin-4 in the epithelium of the ventral rumen was the highest for the HIGH/SB1.6 and HIGH/SB3.2 treatments (significant effect of interaction between main effects; P < 0.01). Under the conditions of the current study, increased intake of concentrates had mostly positive effects on ruminal epithelium in growing rams, and the same was observed for the effect of SB supplementation. However, the effect of SB supplementation was at least partially affected by the inclusion of concentrates in the diet.

Keywords: Barrier function; Epithelium damage; Forestomach; Histology; Ruminants.

MeSH terms

  • Animal Feed* / analysis
  • Animals
  • Butyric Acid
  • Diet / veterinary
  • Dietary Supplements
  • Epithelium / metabolism
  • Fatty Acids, Volatile / metabolism
  • Fermentation
  • Male
  • Rumen* / metabolism
  • Sheep
  • Sheep, Domestic

Substances

  • Butyric Acid
  • Fatty Acids, Volatile