Polyethylene microplastics impede the innate immune response by disrupting the extracellular matrix and signaling transduction

iScience. 2023 Jul 13;26(8):107390. doi: 10.1016/j.isci.2023.107390. eCollection 2023 Aug 18.

Abstract

Microplastics (MPs) can accumulate in animal organs. Numerous studies have linked MPs with immune system. However, the impact of MPs on immune response remains unclear. This study examined the innate immune response of mice exposed to 5 μm MPs. In the lipopolysaccharide challenge, mice treated with MPs exhibited lower levels of serum immune factors and activated immune cells. MPs disrupted immune-related receptors and cause dysfunction in cell signal transduction within the liver and spleen. Proteomic analysis revealed that MPs impede the activation of serum immune-related signals. In addition, the tissue section imaging exhibited a significant enrichment of MPs in the extracellular matrix (ECM), consistent with the ECM dysfunction and immune receptor suppression. Therefore, our data suggest excessive MPs accumulation in ECM inhibits cell signaling pathways, thereby suppressing the activation of immune responses. We propose the biotoxicity of MPs is partly through the MP disruption of ECM (MPDEM).

Keywords: Cell biology; Immunology; Molecular biology.