Effects of Microfluidic Shear on the Plasmid DNA Structure: Implications for Polymeric Gene Delivery Vectors

Langmuir. 2023 Aug 22;39(33):11545-11555. doi: 10.1021/acs.langmuir.3c00934. Epub 2023 Aug 8.

Abstract

Microfluidic manufacturing of advanced gene delivery vectors necessitates consideration of the effects of microfluidic shear forces on the structural integrity of plasmid DNA (pDNA). In this paper, we expose pDNA to variable shear forces in a two-phase, gas-liquid microfluidic reactor and apply gel electrophoresis to analyze the products of on-chip shear-induced degradation. The effects of shear rate, solvent environment, pDNA size, and copolymer complexation on shear-induced degradation are investigated. We find that small naked pDNA (pUC18, 2.7 kb) exhibits shear rate-dependent shear degradation in the microfluidic channels in a mixed organic solvent (dioxane/water/acetic acid; 90/10/<0.1 w/w/w), with the extents of both supercoil isoform relaxation and complete fragmentation increasing as the maximum shear rates increase from 4 × 105 to 2 × 106 s-1. However, over the same range of shear rates, the same pDNA sample shows no evidence of microfluidic shear-induced degradation in a pure aqueous environment. Quiescent control experiments in the same mixed organic solvent prove that a combination of solvent and shear forces is involved in the observed shear-induced degradation. Furthermore, we show that shear degradation effects in mixed organic solvents can be significantly attenuated by complexation of pDNA with the block copolymer polycaprolactone-block-poly(2-vinylpyridine) prior to exposure to microfluidic shear. Finally, we demonstrate that medium (pDSK519, 8.1 kb) and large (pRK290, 20 kb) naked pDNA are more sensitive to shear-induced microfluidic degradation in the mixed organic solvent environment than small pDNA, with both plasmids showing complete fragmentation even at the lowest shear rate, although we found no evidence of shear-induced damage in water for the largest investigated naked pDNA even at the highest flow rate. The resulting understanding of the interplay of the solvent and shear effects during microfluidic processing should inform microfluidic manufacturing routes to new gene therapy formulations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA* / chemistry
  • Genetic Therapy / methods
  • Microfluidics*
  • Plasmids / genetics
  • Polymers / chemistry
  • Solvents
  • Water

Substances

  • DNA
  • Polymers
  • Solvents
  • Water