Electrostatic field as an emergent technology in refining crude oils: a review

Crit Rev Food Sci Nutr. 2023 Aug 8:1-13. doi: 10.1080/10408398.2023.2244080. Online ahead of print.

Abstract

Vegetable oils and fatty acid esters (FAEs) are commonly used in various industrial and commercial applications. However, the presence of contaminants in these oils can severely affect their functionality and suitability. Conventional refining techniques for vegetable oils typically involve degumming, neutralization, bleaching and deodorization. Meanwhile, refining of FAEs often utilize wet or dry washing processes. These are often resource-intensive, producing substantial waste products, causing neutral oil loss, and can also result in the loss of micronutrients. To address these challenges, researchers have explored the use of nano-adsorbents and electrostatic field (E-field) technologies as alternatives in purifying industrial dielectric oils by removing polar particles and contaminants. Nano-adsorbents demonstrated increased efficiency in removing polar contamination while minimizing neutral oil loss. However, removal of these spent adsorbents can be challenging due to their nano-size, and physicochemical properties. The use of these materials combined with E-field technologies offers a novel and sustainable solution for removing spent nano-adsorbents and contaminants. This review provides an overview of current traditional and novel refining technologies for vegetable oils and FAEs, including their associated limitations. Compared to conventional methods, E-field treatment offers several advantages, making it an attractive alternative to conventional approaches in food processing and oil refining.

Keywords: Vegetable oil; electrostatic field; fatty acid esters; oil refining.

Publication types

  • Review