Transcriptional variation in Babesia gibsoni (Wuhan isolate) between in vivo and in vitro cultures in blood stage

Parasit Vectors. 2023 Aug 7;16(1):268. doi: 10.1186/s13071-023-05869-z.

Abstract

Background: Babesia gibsoni, the causative agent of canine babesiosis, belongs to the phylum Apicomplexa. The development of in vitro culture technology has driven research progress in various kinds of omics studies, including transcriptomic analysis of Plasmodium spp. between in vitro and in vivo environments, which has prompted the observation of diagnostic antigens and vaccine development. Nevertheless, no information on Babesia spp. could be obtained in this respect, which greatly hinders the further understanding of parasite growth and development in the blood stage.

Methods: In this study, considerable changes in the morphology and infectivity of continuous in vitro cultured B. gibsoni (Wuhan isolate) were observed compared to in vivo parasites. Based on these changes, B. gibsoni (Wuhan isolate) was collected from both in vivo and in vitro cultures, followed by total RNA extraction and Illumina transcriptome sequencing. The acquired differentially expressed genes (DEGs) were validated using qRT-PCR, and then functionally annotated through several databases. The gene with the greatest upregulation after in vitro culture was cloned from the genome of B. gibsoni (Wuhan isolate) and characterized by western blotting and indirect immunofluorescence assay for detecting the native form and cellular localization.

Results: Through laboratory cultivation, multiple forms of parasites were observed, and the infectivity of in vitro cultured parasites in dogs was found to be lower. Based on these changes, Illumina transcriptome sequencing was conducted, showing that 377 unigenes were upregulated and 334 unigenes were downregulated. Notably, an AP2 transcription factor family, essential for all developmental stages of parasites, was screened, and the transcriptional changes in these family members were tested. Thus, the novel AP2 transcription factor gene (BgAP2-M) with the highest upregulated expression after in vitro adaptation was selected. This gene comprises an open reading frame (ORF) of 1989 base pairs encoding a full-length protein of 662 amino acids. BgAP2-M contains one AP2 domain and one ACDC conserved domain, which may be involved in the nuclear biology of parasites. The prepared polyclonal antibodies against the BgAP2-M peptides further detected a native size of ~ 73 kDa and were localized to the nuclei of B. gibsoni.

Conclusion: This study presents a thorough transcriptome analysis of B. gibsoni in vivo and in vitro for the first time, contributing to a detailed understanding of the effects of environmental changes on the growth and development of parasites in the blood stage. Moreover, it also provides a deeper investigation for the different members of the ApiAP2 transcription factor family as various life stage regulators in Babesia spp.

Keywords: AP2 transcription factor; Asexual stage; Babesia gibsoni; BgAP2-M; DEGs; In vitro; In vivo; Transcriptome sequencing.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Antibodies, Protozoan
  • Babesia*
  • Babesiosis* / parasitology
  • Dog Diseases* / parasitology
  • Dogs
  • Transcription Factors / metabolism

Substances

  • Antibodies, Protozoan
  • Transcription Factors