Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for High-Performance Proton Exchange Membrane Fuel Cell

Adv Mater. 2023 Nov;35(46):e2302666. doi: 10.1002/adma.202302666. Epub 2023 Oct 12.

Abstract

Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2 in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.

Keywords: atomically dispersed catalysts; defects; oxygen reduction reactions; proton exchange membrane fuel cells.