A Novel Bacterial 6-Phytase Improves Productive Performance, Precaecal Digestibility of Phosphorus, and Bone Mineralization in Laying Hens Fed a Corn-Soybean Meal Diet Low in Calcium and Available Phosphorus

J Poult Sci. 2023 Aug 5:60:2023019. doi: 10.2141/jpsa.2023019. eCollection 2023.

Abstract

Exogenous phytases are commonly added to low-phosphorus and low-calcium diets to improve P availability and reduce P excretion by poultry. This study investigated the effect of supplementation with a novel bacterial 6-phytase on egg production, egg quality, bone mineralization, and precaecal digestibility of P in laying hens fed corn-soybean meal-based diets. A total of 576 Hy-Line brown laying hens were used in a completely randomized block design at 25-45 weeks of age (woa). The three treatments included a positive control (PC) adequate-nutrient diet with 2840 kcal metabolizable energy/kg, 0.77% digestible lysine, 3.5% Ca, and 0.30% available P (avP); a negative control (NC) diet with 0.16% points less Ca and avP; and an NC diet supplemented with a novel bacterial 6-phytase at 300 phytase units/kg diet. Hen performance and the percentage of damaged eggs were measured every 4 weeks. Body weight, precaecal digestibility of P, and bone parameters at 45 woa were also measured. The reduction in avP and Ca in the NC diet did not compromise performance or egg quality. However, it decreased (P < 0.001) body weight, tibial dry matter, tibial ash and P content, and precaecal digestibility of P. Importantly, all these parameters were significantly improved (P < 0.001) and essentially restored to the levels measured in PC diet-fed hens upon supplementation with phytase. In summary, the present study demonstrates that the new bacterial 6-phytase could effectively counteract the negative effects of P and Ca deficiencies on body weight, bone mineralization, and P availability, thereby supporting high productivity without compromising the welfare of laying hens.

Keywords: available phosphorus; calcium; digestibility; laying hens; mineralization; phytase.