Zeolite-encaged mononuclear copper centers catalyze CO2 selective hydrogenation to methanol

Natl Sci Rev. 2023 Feb 20;10(7):nwad043. doi: 10.1093/nsr/nwad043. eCollection 2023 Jul.

Abstract

The selective hydrogenation of CO2 to methanol by renewable hydrogen source represents an attractive route for CO2 recycling and is carbon neutral. Stable catalysts with high activity and methanol selectivity are being vigorously pursued, and current debates on the active site and reaction pathway need to be clarified. Here, we report a design of faujasite-encaged mononuclear Cu centers, namely Cu@FAU, for this challenging reaction. Stable methanol space-time-yield (STY) of 12.8 mmol gcat-1 h-1 and methanol selectivity of 89.5% are simultaneously achieved at a relatively low reaction temperature of 513 K, making Cu@FAU a potential methanol synthesis catalyst from CO2 hydrogenation. With zeolite-encaged mononuclear Cu centers as the destined active sites, the unique reaction pathway of stepwise CO2 hydrogenation over Cu@FAU is illustrated. This work provides a clear example of catalytic reaction with explicit structure-activity relationship and highlights the power of zeolite catalysis in complex chemical transformations.

Keywords: CO2 hydrogenation; catalysis; methanol; mononuclear copper; zeolite.