Automatic design of gene regulatory mechanisms for spatial pattern formation

bioRxiv [Preprint]. 2023 Aug 24:2023.07.26.550573. doi: 10.1101/2023.07.26.550573.

Abstract

Synthetic developmental biology aims to engineer gene regulatory mechanisms (GRMs) for understanding and producing desired multicellular patterns and shapes. However, designing GRMs for spatial patterns is a current challenge due to the nonlinear interactions and feedback loops in genetic circuits. Here we present a methodology to automatically design GRMs that can produce any given spatial pattern. The proposed approach uses two orthogonal morphogen gradients acting as positional information signals in a multicellular tissue area or culture, which constitutes a continuous field of engineered cells implementing the same designed GRM. To efficiently design both the circuit network and the interaction mechanisms-including the number of genes necessary for the formation of the target pattern-we developed an automated algorithm based on high-performance evolutionary computation. The tolerance of the algorithm can be configured to design GRMs that are either simple to produce approximate patterns or complex to produce precise patterns. We demonstrate the approach by automatically designing GRMs that can produce a diverse set of synthetic spatial expression patterns by interpreting just two orthogonal morphogen gradients. The proposed framework offers a versatile approach to systematically design and discover pattern-producing genetic circuits.

Keywords: Evolutionary Computation; Gene Expression Patterns; Gene Regulatory Mechanisms; Machine Learning; Synthetic Biology; Systems Biology.

Publication types

  • Preprint