Microplastic distribution in different tissues of small pelagic fish of the Northeast Atlantic Ocean

Sci Total Environ. 2023 Nov 25:901:166050. doi: 10.1016/j.scitotenv.2023.166050. Epub 2023 Aug 3.

Abstract

The accumulation of microplastics (MP) by marine species of ecological and commercial interest represents a major concern, particularly for those present in human diet. This study analysed the accumulation of MP in three species of coastal pelagic fish with high commercial value, European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus) and horse mackerel (Trachurus trachurus), collected along the Western coast of the Iberian Peninsula. The gastrointestinal tract (GT), gills and muscle were analysed and a total of 504 particles were observed. MP were found in all target tissues of the studied species. Horse mackerel exhibited significantly higher concentrations of microplastics in GT compared to other tissues. On the other hand, anchovies and sardines had significantly lower microplastic concentrations in their muscle tissue. The accumulation of microplastics in the gills showed a significant difference between species, with anchovy having significantly higher concentrations compared to horse mackerel. Horse mackerel had the highest percentage of individuals with microplastics in their GT (92 %), followed by sardine (75 %) and anchovy (50 %). Horse mackerel was also the species that registered the highest percentage of individuals with particles in the muscle (63 %), followed by anchovy (40 %) and finally sardine (39 %). MP in the gills of European sardines and anchovies were similar to those found in water samples. The majority of MP found measured <0.5 mm and were blue fibers. Furthermore, the presence of MP in the GT showed a weak and moderated significant negative correlation with the Fulton Condition Index in horse mackerel and European sardine. Our study confirms the ubiquitous extent of MP contamination in the ocean and provides baseline evidence of MP tissue distribution in three small pelagic fish species with distinct feeding behaviour, while correlating this with the presence of MP in water. Importantly, the results of this study contribute to improve the understanding of biological partitioning of MP in open sea fish species with high commercial relevance, and the potential deleterious effects of our increasingly MP contaminated world.

Keywords: Gastrointestinal tract; Gills; Microplastics; Muscle; Pelagic fish.