Lignin-modified metal-organic framework as an effective adsorbent for the removal of methyl orange

Int J Biol Macromol. 2023 Oct 1:250:126092. doi: 10.1016/j.ijbiomac.2023.126092. Epub 2023 Aug 3.

Abstract

Herein, lignin-modified metal-organic frameworks (NH2-UIO@L) are prepared using a one-step synthesis as sorbents for the removal of organic dyes from water. The introduction of lignin improved the adsorption sites. NH2-UIO@L2 adsorption of MO conforms to Langmuir model, and the adsorption capacity of NH2-UIO@L2 on MO was 214.13 mg·L-1 with an adsorption efficiency up to 99.28 %, which was significantly higher than values for other adsorbents. Due to hydrogen bonds, π-π interactions and electrostatic interactions, MO was effectively removed by NH2-UIO@L2 and its adsorption efficiency is maintained at 90.55 % after six cycles. The adsorption kinetics showed that the NH2-UIO@L2 adsorption of MO was chemical adsorption and controlled by intraparticle diffusion and external mass transfer. Further, the adsorption performance of NH2-UIO@L2 on MO and MB in mixed MO/MB solution was investigated. The adsorption capacity of NH2-UIO@L2 in mixed MO/MB solution was 207.04 mg·L-1 for MO and 243.31 mg·L-1 for MB; the adsorption of NH2-UIO@L2 on MO followed the Dubinin-Radushkevich and pseudo-second-order models, and the adsorption on MB followed the Temkin and pseudo-second-order models. Hydrogen bonds, π-π interactions, and pore filling are all implicated in the removal of MO and MB. In particular, the electrostatic attraction between MB and MO improves the adsorption efficiency of NH2-UIO@L2 on MB. NH2-UIO@L2 has good reusability, maintaining an adsorption efficiency of 97.66 % for MO and up to 99.15 % for MB after six cycles. Its simple preparation and superior adsorption suggest that NH2-UIO@L2 has considerable potential to remove organic dyes from wastewater.

Keywords: Adsorption; Adsorption mechanism; Lignin-modified metal-organic frameworks; Reusability.