Structural Characterization and Anticomplement Activity of an Acidic Heteropolysaccharide from Lysimachia christinae Hance

Planta Med. 2023 Dec;89(15):1457-1467. doi: 10.1055/a-2148-7163. Epub 2023 Aug 4.

Abstract

A novel acidic heteropolysaccharide (LCP-90-1) was isolated and purified from a traditional "heat-clearing" Chinese medicine, Lysimachia christinae Hance. LCP-90-1 (Mw, 20.65 kDa) was composed of Man, Rha, GlcA, Glc, Gal, and Ara, with relative molar ratios of 1.00: 3.00: 11.62: 1.31: 1.64: 5.24. The backbone consisted of 1,4-α-D-GlcpA, 1,4-α-D-Glcp, 1,4-β-L-Rhap, and 1,3,5-α-L-Araf, with three branches of β-D-Galp-(1 → 4)-β-L-Rhap-(1→, α-L-Araf-(1→ and α-D-Manp-(1→ attached to the C-5 position of 1,3,5-α-L-Araf. LCP-90-1 exhibited potent anticomplement activity (CH50: 135.01 ± 0.68 µg/mL) in vitro, which was significantly enhanced with increased glucuronic acid (GlcA) content in its degradation production (LCP-90-1-A, CH50: 28.26 ± 0.39 µg/mL). However, both LCP-90-1 and LCP90-1-A were inactivated after reduction or complete acid hydrolysis. These observations indicated the important role of GlcA in LCP-90-1 and associated derivatives with respect to anticomplement activity. Similarly, compared with LCP-90-1, the antioxidant activity of LCP-90-1-A was also enhanced. Thus, polysaccharides with a high content of GlcA might be important and effective substances of L. christinae.

MeSH terms

  • Carbohydrate Sequence
  • Glucuronic Acid
  • Humans
  • Hydrolysis
  • Lysimachia*
  • Polysaccharides* / chemistry

Substances

  • anticomplement
  • Polysaccharides
  • Glucuronic Acid