Quantum Light from Lossy Semiconductor Rydberg Excitons

Phys Rev Lett. 2023 Jul 21;131(3):033607. doi: 10.1103/PhysRevLett.131.033607.

Abstract

The emergence of photonic quantum correlations is typically associated with emitters strongly coupled to a photonic mode. Here, we show that semiconductor Rydberg excitons, which are only weakly coupled to a free-space light mode can produce strongly antibunched fields, i.e., quantum light. This effect is fueled by a micron-scale excitation blockade between Rydberg excitons inducing pair-wise polariton scattering events. Photons incident on an exciton resonance are scattered into blue- and red-detuned pairs, which enjoy relative protection from absorption and thus dominate the transmitted light. We demonstrate that this effect persists in the presence of additional phonon coupling, strong nonradiative decay, and across a wide range of experimental parameters. Our results pave the way for the observation of quantum statistics from weakly coupled semiconductor excitons.