Probing Momentum-Dependent Scattering in Uniaxially Stressed Sr_{2}RuO_{4} through the Hall Effect

Phys Rev Lett. 2023 Jul 21;131(3):036301. doi: 10.1103/PhysRevLett.131.036301.

Abstract

The largest Fermi surface sheet of the correlated metal Sr_{2}RuO_{4} can be driven through a Lifshitz transition between an electronlike and an open geometry by uniaxial stress applied along the [100] lattice direction. Here, we investigate the effect of this transition on the longitudinal resistivity ρ_{xx} and the Hall coefficient R_{H}. ρ_{xx}(T), when Sr_{2}RuO_{4} is tuned to this transition, is found to have a T^{2}logT form, as expected for a Fermi liquid tuned to a Lifshitz transition. R_{H} is found to become more negative as the Fermi surface transitions from an electronlike to an open geometry, opposite to general expectations from this change in topology. The magnitude of the change in R_{H} implies that scattering changes throughout the Brillouin zone, not just at the point in k space where the transition occurs. In a model of orbital-dependent scattering, the electron-electron scattering rate on sections of Fermi surface with xy orbital weight is found to decrease dramatically.