Theoretical studies of magneto-optical Kerr and Faraday effects in two-dimensional second-order topological insulators

Sci Rep. 2023 Aug 3;13(1):12599. doi: 10.1038/s41598-023-39644-y.

Abstract

Optical approaches are useful for studying the electronic and spin structure of materials. Here, based on the tight-binding model and linear response theory, we investigate the magneto-optical Kerr and Faraday effects in two-dimensional second-order topological insulators (SOTI) with external magnetization. We find that orbital-dependent Zeeman term induces band crossings for SOTI phase, which are absent for trivial phase. In the weak-magnetization regime, these crossings give rise to giant jumps (peaks) of Kerr and Faraday angles (ellipticity) for SOTI phase. In the strong-magnetization regime, we find that two nearly flat bands are formed at the high-symmetry point of Brillouin zone of SOTI phase. These flat bands give rise to two successive giant jumps (peaks) of Kerr and Faraday angles (ellipticity). These phenomena provide new possibilities to characterize and detect the two-dimensional SOTI phase.