In-depth insights into Fe(III)-doped g-C3N4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application

J Hazard Mater. 2023 Oct 5:459:132117. doi: 10.1016/j.jhazmat.2023.132117. Epub 2023 Jul 22.

Abstract

In this study, we demonstrate that Fe(III)-doped g-C3N4 can efficiently activate peracetic acid (PAA) to degrade electron-rich pollutants (e.g., sulfamethoxazole, SMX) over a wide pH range (3-7). Almost ∼100% high-valent iron-oxo species (Fe(V)) was generated and acted as the dominant reactive species responsible for the micropollutants oxidation based on the analysis result of quenching experiments, 18O isotope-labeling examination and methyl phenyl sulfoxide (PMSO) probe method. Electrochemical testing (e.g., amperometric i-t and linear sweep voltammetry (LSV)) and density functional theory (DFT) calculations illustrated that the main active site Fe atom and PAA underwent electron transfer to form Fe(V) for attacking SMX. Linear free energy relationship (LFER) between the pseudo-first-order rates of different substituted phenols (SPs) and the Hammett constant σ+ depicted the electrophilic oxidation properties. The selective oxidation of Fe(V) endows the established system remarkable anti-interference capacity against water matrices, while the Fe(V) lead to the formation of iodinated disinfection by-products (I-DBPs) in the presence of I-. Fe(III)-doped g-C3N4/PAA system showed excellent degradation efficiency of aquaculture antibiotics. This study enriches the knowledge and research of high-valent iron-oxo species and provides a novel perspective for the activation of PAA via heterogeneous iron-based catalysts and practical environmental applications.

Keywords: Fe(III)-doped g-C(3)N(4); High-valent iron-oxo species; Iodinated disinfection by-products; Peracetic acid; Sulfamethoxazole.