Temperature influence on the compression and breakage behaviour of yeast cells

Lett Appl Microbiol. 2023 Aug 2;76(8):ovad089. doi: 10.1093/lambio/ovad089.

Abstract

Industrial biotechnology uses microbial cells to produce a wide range of products. While the genetic and molecular properties of these organisms are well understood, less is known about their mechanical properties. Previous work has established a test procedure for single yeast cells using a nanoindentation instrument equipped with a flat-punch probe, which allows single cells (Saccharomyces cerevisiae) to be compressed between two parallel surfaces. The resulting force-displacement curves clearly showed the bursting of the cells and were used to determine characteristics such as burst force and burst energy. Other studies have investigated the influence of growth conditions and measurement conditions on the mechanical characteristics. The recent study examined the mechanical characteristics according to the temperature during compression. Temperature from 0°C to 25°C has no significant effect on the micromechanical properties. Increasing the temperature up to 35°C causes a reduction in the strength of the cells. At even higher temperatures, up to 50°C, the burst force and burst energy increase significantly. A deformation geometry model was used to calculate the cell wall tensile strength as a function of temperature. The results of these studies may facilitate the identification of efficient conditions for cell disruption and product recovery in downstream biotechnological processes.

Keywords: Saccharomyces cerevisiae; cell compression; degradation; mechanical properties; yeast.

MeSH terms

  • Biotechnology
  • Hot Temperature*
  • Pressure
  • Saccharomyces cerevisiae* / genetics
  • Temperature