Impacts and mechanisms of PM2.5 on bone

Rev Environ Health. 2023 Aug 3. doi: 10.1515/reveh-2023-0024. Online ahead of print.

Abstract

Osteoporosis is a metabolic bone disease, which is characterized by a decreased bone mass and deterioration of bone microstructure, resulting in increased bone fragility and a higher risk of fracture. The main pathological process of osteoporosis is the dynamic imbalance between bone absorption and bone formation, which can be caused by various factors such as air pollution. Particulate matter (PM)2.5 refers to the fine particles in the atmosphere, which are small in volume and large in specific surface area. These particles are prone to carrying toxic substances and have negative effects on several extrapulmonary organs, including bones. In this review, we present relevant data from studies, which show that PM2.5 is associated with abnormal bone turnover and osteoporosis. PM2.5 may cause or aggravate bone loss by stimulating an inflammatory response, inducing oxidative damage, reducing estrogen efficiency by competitive binding to estrogen receptors, or endocrine disorder mediated by binding with aromatic hydrocarbon receptors, and affecting the synthesis of vitamin D to reduce calcium absorption. The cellular and molecular mechanisms involved in these processes are also summarized in this review.

Keywords: PM 2.5; air pollution; bone; osteoblast; osteoclast.

Publication types

  • Review