Evaluating the Effect of pH, Temperature and Concentration on Antioxidant and Antibacterial Potential of Spectroscopically, Spectrophotometrically and Microscopically Characterized Mentha Spicata Capped Silver Nanoparticles

J Fluoresc. 2024 May;34(3):1253-1267. doi: 10.1007/s10895-023-03322-z. Epub 2023 Jul 31.

Abstract

The use of traditional plants has been tremendously increased due to their higher biological impact, minimal side effects, and comparatively low cost. Moreover, the emergence of antibacterial resistance is also shifting the scientific community to reconsider herbal remedies which provide relatively safer, cheap and biologically tolerable solutions. The present research was designed to fabricate the Mentha spicata conjugated silver nanoparticles (Me-AgNPs). Furthermore, the assessment of the bactericidal potential of Me-AgNPs against various bacterial strains was another motive behind this study. Fabricated NPs were characterized with the help of the UV-Visible spectrophotometric analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). Me-AgNPs showed a significant zone of inhibition (23 ± 0.2 mm) at 8 mg/mL against Staphylococcus aureus and a 4.0 ± 0.2 mm zone of growth inhibition at 2 mg/mL against Aeromonas veronii. The stability of Me-AgNPs was assessed at various pH (4, 7 and 11) and temperatures (25 °C, 4 °C, 37 °C, 75 °C). The significant zones of inhibition (11.3 ± 0.3 mm, 8.3 ± 0.3mm, 14.3 ± 0.3 mm, and 7.6 ± 0.2 mm) were observed at pH 11 against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Klebsiella pneumoniae, respectively. Growth inhibition zones (14.0 ± 0.5 mm and 13.0 ± 0.5 mm) were also determined against B. subtilis and S. aureus at 25 °C. DPPH bioassay was conducted to find the antioxidant properties of Me-AgNPs. The highest (38.66 ± 0.2%) free radical scavenging activity was shown by Me-AgNPs at 4 mg/mL. Present study results concluded that biogenic Me-AgNPs have bactericidal as well as anti-oxidative potential. Moreover, these green synthesized Me-AgNPs could maintain their potency and stability at a wide range of pH and temperature.

Keywords: Bacillus subtilis; Mentha spicata; Mentha spicata-conjugated silver nanoparticles; Antibacterial activity; Antioxidant activity; Fourier transform infrared spectroscopy.

MeSH terms

  • Anti-Bacterial Agents* / chemical synthesis
  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Antioxidants* / chemistry
  • Antioxidants* / pharmacology
  • Hydrogen-Ion Concentration
  • Mentha / chemistry
  • Metal Nanoparticles* / chemistry
  • Microbial Sensitivity Tests*
  • Picrates / antagonists & inhibitors
  • Picrates / chemistry
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology
  • Silver* / chemistry
  • Silver* / pharmacology
  • Spectrophotometry, Ultraviolet
  • Spectroscopy, Fourier Transform Infrared
  • Staphylococcus aureus* / drug effects
  • Temperature*

Substances

  • Silver
  • Anti-Bacterial Agents
  • Antioxidants
  • Plant Extracts
  • Picrates