Molecular docking and biological activities of Ni(II), Cu(II) and Co(II) complexes with a new potentially hexadentate polyamine ligand; X-ray crystal structure of the Cu(II) complex

J Biomol Struct Dyn. 2023 Jul 31:1-14. doi: 10.1080/07391102.2023.2240412. Online ahead of print.

Abstract

Three new metal complexes have been obtained from the reaction of a new polyamine (L) with Ni(II), Cu(II), and Co(II) ions. The X-ray structural analysis of the Cu(II) complex shows that the copper atom is in a very distorted square pyramidal environment, coordinated by five of the six nitrogen donor atoms of the potentially hexadentate ligand. To evaluate the biological potential of the ligand and the synthesized metal complexes, their binding behavior with DNA was studied by molecular modeling methods. The Molecular docking studies showed that the free ligand and its complexes were bound to the major groove of DNA. The antioxidant activities of the ligand and its metal complexes were also assessed, in vitro, using 2,2-diphenyl-1-picrylhydrazyl. The synthesized compounds were tested for activity against lung carcinoma epithelial cells (A549) using the MTT cell viability assay. A comparative study of the IC50 values indicated that the Cu(II) complex exhibited the highest activity, while the Co(II) and Ni(II) complexes showed more potent antiproliferative activity than the ligand. The antibacterial activities of the synthesized complexes were evaluated using micro-broth dilution and disk diffusion methods. The complexes showed greater antibacterial activity than the free ligand.Communicated by Ramaswamy H. Sarma.

Keywords: X-ray structural; antibacterial; anticancer; antioxidant; molecular docking.