Cryogels: Advancing Biomaterials for Transformative Biomedical Applications

Pharmaceutics. 2023 Jun 27;15(7):1836. doi: 10.3390/pharmaceutics15071836.

Abstract

Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.

Keywords: biomaterials; biomedical applications; cryogels; drug delivery; tissue engineering.

Publication types

  • Review

Grants and funding

This review article received no external funding.