Utilization of Phytic Acid as a Selective Depressant for Quartz Activated by Zinc Ions in Smithsonite Flotation

Molecules. 2023 Jul 12;28(14):5361. doi: 10.3390/molecules28145361.

Abstract

It is difficult to separate smithsonite from quartz with metal ion activation through flotation using sodium oleate (NaOL) as the collector. The inevitable Zn2+ in the flotation process of zinc oxide ore makes the separation of smithsonite and quartz more difficult. Thus, this study investigated the use of phytic acid (PA) as a flotation depressant to separate smithsonite from Zn2+-activated quartz while utilizing sodium oleate as the collector. Microflotation tests indicated that phytic acid could selectively inhibit the flotation of Zn2+-activated quartz without affecting the flotation of smithsonite. The measured zeta potentials revealed that the existence of phytic acid hindered sodium oleate adsorption to the surface of Zn2+-activated quartz but had little influence on the adsorption of smithsonite. Zn2+ dissolution tests and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis indicated that the phytic acid could dissolve the Zn2+ from the minerals' surfaces into the solution. In conjunction with X-ray photoelectron spectroscopy results, the analysis indicated that phytic acid could adsorb onto the Zn2+-activated quartz surface and eliminate active sites for sodium oleate adsorption by dissolving the active Zn2+ from the quartz surface into the solution.

Keywords: flotation separation; phytic acid; quartz; smithsonite; zinc ions.

Grants and funding

This research received no external funding.