Photoelectrochemical UV Detector Based on High-Temperature Resistant ITO Nanowire Network Transparent Conductive Electrodes: Both the Response Range and Responsivity Are Improved

Nanomaterials (Basel). 2023 Jul 17;13(14):2086. doi: 10.3390/nano13142086.

Abstract

UV transparent conductive electrodes based on transferable ITO nanowire networks were prepared to solve the problem of low UV light utilization in conventional photoelectrochemical UV detectors. The mutually cross-linked ITO nanowire network achieved good electrical conductivity and light transmission, and the novel electrode had a transmission rate of more than 80% throughout the near-UV and visible regions. Compared to Ag nanowire electrodes with similar functionality, the chemical stability of the ITO nanowire transparent conductive electrode ensured that the device worked stably in iodine-based electrolytes. More importantly, ITO electrodes composed of oxides could withstand temperatures above 800 °C, which is extremely critical for photoelectrochemical devices. After the deposition of a TiO2 active layer using the high-temperature method, the response range of the photoelectrochemical UV detector was extended from a peak-like response between 300-400 nm to a plateau-like response between 200-400 nm. The responsivity was significantly increased to 56.1 mA/W. The relationship between ITO nanowire properties and device performance, as well as the reasons for device performance enhancement, were intensively investigated.

Keywords: ITO nanowires; high-temperature resistant; photoelectrochemical; physical template method; response range.