A New Proposed Symbiotic Plant-Herbivore Relationship between Burkea africana Trees, Cirina forda Caterpillars and Their Associated Fungi Pleurostomophora richardsiae and Aspergillus nomius

Microorganisms. 2023 Jul 24;11(7):1864. doi: 10.3390/microorganisms11071864.

Abstract

Burkea africana is a tree found in savannah and woodland in southern Africa, as well as northwards into tropical African regions as far as Nigeria and Ethiopia. It is used as fuel wood, medicinally to treat various conditions, such as toothache, headache, migraine, pain, inflammation, and sexually transmitted diseases, such as gonorrhoea, but also an ornamental tree. The current study investigated the possible symbiotic relationship between B. africana trees and the C. forda caterpillars and the mutual role played in ensuring the survival of B. africana trees/seedlings in harsh natural conditions and low-nutrient soils. Deoxyribonucleic acid isolation and sequencing results revealed that the fungal species Pleurostomophora richardsiae was highly predominant in the leaves of B. africana trees and present in the caterpillars. The second most prominent fungal species in the caterpillars was Aspergillus nomius. The latter is known to be related to a Penicillium sp. which was found to be highly prevalent in the soil where B. africana trees grow and is suggested to play a role in enhancing the effective growth of B. africana trees in their natural habitat. To support this, a phylogenetic analysis was conducted, and a tree was constructed, which shows a high percentage similarity between Aspergillus and Penicillium sp. The findings of the study revealed that B. africana trees not only serve as a source of feed for the C. forda caterpillar but benefit from C. forda caterpillars which, after dropping onto the soil, is proposed to inoculate the soil surrounding the trees with the fungus A. nomius which suggests a symbiotic and/or synergistic relationship between B. africana trees and C. forda caterpillars.

Keywords: Aspergillus nomius; Pleurostomophora richardsiae; endophytes; lepidoptera; mutual benefit; plant-herbivore interaction.