Cutting-Force Modeling Study on Vibration-Assisted Micro-Milling of Bone Materials

Micromachines (Basel). 2023 Jul 14;14(7):1422. doi: 10.3390/mi14071422.

Abstract

This study aims to enhance surgical safety and facilitate patient recovery through the investigation of vibration-assisted micro-milling technology for bone-material removal. The primary objective is to reduce cutting force and improve surface quality. Initially, a predictive model is developed to estimate the cutting force during two-dimensional (2D) vibration-assisted micro-milling of bone material. This model takes into account the anisotropic structural characteristics of bone material and the kinematics of the milling tool. Subsequently, an experimental platform is established to validate the accuracy of the cutting-force model for bone material. Micro-milling experiments are conducted on bone materials, with variations in cutting direction, amplitude, and frequency, to assess their impact on cutting force. The experimental results demonstrate that selecting appropriate machining parameters can effectively minimize cutting force in 2D vibration-assisted micro-milling of bone materials. The insights gained from this study provide valuable guidance for determining cutting parameters in vibration-assisted micro-milling of bone materials.

Keywords: anisotropy; bone materials; cutting force; micro-milling; vibration-assisted.