Jump and Pull-in Instability of a MEMS Gyroscope Vibrating System

Micromachines (Basel). 2023 Jul 8;14(7):1396. doi: 10.3390/mi14071396.

Abstract

Jump and pull-in instability are common nonlinear dynamic behaviors leading to the loss of the performance reliability and structural safety of electrostatic micro gyroscopes. To achieve a better understanding of these initial-sensitive phenomena, the dynamics of a micro gyroscope system considering the nonlinearities of the stiffness and electrostatic forces are explored from a global perspective. Static and dynamic analyses of the system are performed to estimate the threshold of the detecting voltage for static pull-in, and dynamic responses are analyzed in the driving and detecting modes for the case of primary resonance and 1:1 internal resonance. The results show that, when the driving voltage frequency is a bit higher than the natural frequency, a high amplitude of the driving AC voltage may induce the coexistence of bistable periodic responses due to saddle-node bifurcation of the periodic solution. Basins of attraction of bistable attractors provide evidence that disturbance of the initial conditions can trigger a jump between bistable attractors. Moreover, the Melnikov method is applied to discuss the condition for pull-in instability, which can be ascribed to heteroclinic bifurcation. The validity of the prediction is verified using the sequences of safe basins and unsafe zones for dynamic pull-in. It follows that pull-in instability can be caused and aggravated by the increase in the amplitude of the driving AC voltage.

Keywords: MEMS gyroscope; bistability; fractal; heteroclinic bifurcation; jump; pull-in instability; saddle-node bifurcation.