Effect of Current Density on the Corrosion Resistance and Photocatalytic Properties of Cu-Ni-Zn0.96Ni0.02Cu0.02O Nanocomposite Coatings

Materials (Basel). 2023 Jul 10;16(14):4925. doi: 10.3390/ma16144925.

Abstract

2 at.% Cu + 2 at.% Ni were co-doped in ZnO nanoparticles by a simple hydrothermal method, and then the modified nanoparticles were compounded into Cu-Ni alloy coatings using an electroplating technique. The effects of the current density (15-45 mA/cm2) on the phase structure, surface morphology, thickness, microhardness, corrosion resistance, and photocatalytic properties of the coatings were investigated. The results show that the Cu-Ni-Zn0.96Ni0.02Cu0.02O nanocomposite coatings had the highest compactness and the best overall performance at a current density of 35 mA/cm2. At this point, the co-deposition rate reached its maximum, resulting in the deposition of more Zn0.96Ni0.02Cu0.02O nanoparticles in the coating. More nanoparticles were dispersed in the coating with a better particle strengthening effect, which resulted in a minimum crystallite size of 15.21 nm and a maximum microhardness of 558 HV. Moreover, the surface structure of the coatings became finer and denser. Therefore, the corrosion resistance was significantly improved with a corrosion current density of 2.21 × 10-3 mA/cm2, and the charge transfer resistance was up to 20.98 kΩ·cm2. The maximum decolorization rate of the rhodamine B solution was 24.08% under ultraviolet light irradiation for 5 h. The improvement in the comprehensive performance was mainly attributed to the greater concentration of Zn0.96Ni0.02Cu0.02O nanoparticles in the coating, which played the role of the particle-reinforced phase and reduced the microstructure defects.

Keywords: (Cu, Ni) co-doped ZnO; Cu-Ni nanocomposite coating; corrosion resistance; electrodeposition; photocatalysis properties.