Targeted MicroRNA Profiling Reveals That Exendin-4 Modulates the Expression of Several MicroRNAs to Reduce Steatosis in HepG2 Cells

Int J Mol Sci. 2023 Jul 18;24(14):11606. doi: 10.3390/ijms241411606.

Abstract

Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/β-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.

Keywords: GLP-1R agonist; HepG2; NAFLD; exendin-4; miRNAs; steatosis.

MeSH terms

  • Diabetes Mellitus, Type 2* / drug therapy
  • Diabetes Mellitus, Type 2* / genetics
  • Exenatide / pharmacology
  • Glucagon-Like Peptide 1 / metabolism
  • Glucagon-Like Peptide-1 Receptor / genetics
  • Hep G2 Cells
  • Humans
  • Liver Cirrhosis
  • MicroRNAs* / genetics
  • MicroRNAs* / therapeutic use
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Non-alcoholic Fatty Liver Disease* / genetics
  • Non-alcoholic Fatty Liver Disease* / metabolism

Substances

  • Exenatide
  • MicroRNAs
  • Glucagon-Like Peptide 1
  • Glucagon-Like Peptide-1 Receptor

Grants and funding

This project was funded by an intramural grant from the Qatar Biomedical Research Institute.