An In Silico Analysis Reveals Sustained Upregulation of Neuroprotective Genes in the Post-Stroke Human Brain

Brain Sci. 2023 Jun 23;13(7):986. doi: 10.3390/brainsci13070986.

Abstract

Ischemic stroke is a cerebrovascular disease caused by an interruption of blood flow to the brain, thus determining a lack of oxygen and nutrient supply. The ischemic event leads to the activation of several molecular signaling pathways involved in inflammation and the production of reactive oxygen species, causing irreversible neuronal damage. Several studies have focused on the acute phase of ischemic stroke. It is not clear if this traumatic event can influence some of the molecular processes in the affected area even years after the clinical event. In our study, we performed an in silico analysis using freely available raw data with the purpose of evaluating the transcriptomic state of post-mortem brain tissue. The samples were taken from non-fatal ischemic stroke patients, meaning that they suffered an ischemic stroke and lived for a period of about 2 years after the event. These samples were compared with healthy controls. The aim was to evaluate possible recovery processes useful to mitigating neuronal damage and the detrimental consequences of stroke. Our results highlighted differentially expressed genes codifying for proteins along with long non-coding genes with anti-inflammatory and anti-oxidant functions. This suggests that even after an amount of time from the ischemic insult, different neuroprotective mechanisms are activated to ameliorate brain conditions and repair post-stroke neuronal injury.

Keywords: human brain; in silico analysis; ischemic stroke; neuroinflammation; neuroprotection; oxidative stress; post-stroke; transcriptome.