Exploring Factors Conditioning the Expression of Botryosphaeria Dieback in Grapevine for Integrated Management of the Disease

Phytopathology. 2024 Jan;114(1):21-34. doi: 10.1094/PHYTO-04-23-0136-RVW. Epub 2024 Feb 14.

Abstract

Species from the Botryosphaeriaceae family are the causal agents of Botryosphaeria dieback (BD), a worldwide grapevine trunk disease. Because of their lifestyle and their adaptation to a wide range of temperatures, these fungi constitute a serious threat to vineyards and viticulture, especially in the actual context of climate change. Grapevine plants from both nurseries and vineyards are very susceptible to infections by botryosphaeriaceous fungi due to several cuts and wounds made during their propagation process and their entire life cycle, respectively. When decline becomes chronic or apoplectic, it reduces the longevity of the vineyard and affects the quality of the wine, leading to huge economic losses. Given the environmental impact of fungicides, and their short period of effectiveness in protecting pruning wounds, alternative strategies are being developed to fight BD fungal pathogens and limit their propagation. Among them, biological control has been recognized as a promising and sustainable alternative. However, there is still no effective strategy for combating this complex disease, conditioned by both fungal life traits and host tolerance traits, in relationships with the whole microbiome/microbiota. To provide sound guidance for an effective and sustainable integrated management of BD, by combining the limitation of infection risk, tolerant grapevine cultivars, and biological control, this review explores some of the factors conditioning the expression of BD in grapevine. Among them, the lifestyle of BD-associated pathogens, their pathogenicity factors, the cultivar traits of tolerance or susceptibility, and the biocontrol potential of Bacillus spp. and Trichoderma spp. are discussed.

Keywords: Bacillus subtilis; Neofusicoccum parvum; Trichoderma atroviride; biological control; life traits; tolerance traits; trunk diseases.

Publication types

  • Review

MeSH terms

  • Ascomycota*
  • Fungicides, Industrial*
  • Plant Diseases / microbiology
  • Plant Diseases / prevention & control
  • Trichoderma*
  • Vitis* / microbiology

Substances

  • Fungicides, Industrial