A CNN-Based Method for Enhancing Boring Vibration with Time-Domain Convolution-Augmented Transformer

Insects. 2023 Jul 13;14(7):631. doi: 10.3390/insects14070631.

Abstract

Recording vibration signals induced by larvae activity in the trunk has proven to be an efficient method for detecting trunk-boring insects. However, the accuracy of the detection is often limited because the signals collected in real-world environments are heavily disrupted by environmental noises. To deal with this problem, we propose a deep-learning-based model that enhances trunk-boring vibration signals, incorporating an attention mechanism to optimize its performance. The training data utilized in this research consist of the boring vibrations of Agrilus planipennis larvae recorded within trunk sections, as well as various environmental noises that are typical of the natural habitats of trees. We mixed them at different signal-to-noise ratios (SNRs) to simulate the realistically collected sounds. The SNR of the enhanced boring vibrations can reach up to 17.84 dB after being enhanced by our model, and this model can restore the details of the vibration signals remarkably. Consequently, our model's enhancement procedure led to a significant increase in accuracy for VGG16, a commonly used classification model. All results demonstrate the effectiveness of our approach for enhancing the detection of larvae using boring vibration signals.

Keywords: attention mechanism; boring vibration; deep learning; neural network; pest management.