On the integration of decision trees with mixture cure model

Stat Med. 2023 Oct 15;42(23):4111-4127. doi: 10.1002/sim.9850. Epub 2023 Jul 28.

Abstract

The mixture cure model is widely used to analyze survival data in the presence of a cured subgroup. Standard logistic regression-based approaches to model the incidence may lead to poor predictive accuracy of cure, specifically when the covariate effect is non-linear. Supervised machine learning techniques can be used as a better classifier than the logistic regression due to their ability to capture non-linear patterns in the data. However, the problem of interpret-ability hangs in the balance due to the trade-off between interpret-ability and predictive accuracy. We propose a new mixture cure model where the incidence part is modeled using a decision tree-based classifier and the proportional hazards structure for the latency part is preserved. The proposed model is very easy to interpret, closely mimics the human decision-making process, and provides flexibility to gauge both linear and non-linear covariate effects. For the estimation of model parameters, we develop an expectation maximization algorithm. A detailed simulation study shows that the proposed model outperforms the logistic regression-based and spline regression-based mixture cure models, both in terms of model fitting and evaluating predictive accuracy. An illustrative example with data from a leukemia study is presented to further support our conclusion.

Keywords: EM algorithm; ROC curve; multiple imputation; platt scaling; predictive accuracy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Decision Trees
  • Humans
  • Logistic Models
  • Models, Statistical*
  • Proportional Hazards Models
  • Survival Analysis