Crystal structure and cation-anion interactions of potassium (Difluoromethanesulfonyl) (trifluorome thanesulfonyl)imide

Front Chem. 2023 Jul 12:11:1191394. doi: 10.3389/fchem.2023.1191394. eCollection 2023.

Abstract

Sulfonimide salts are of great interest for battery use thanks to their special properties including sufficient superior chemical/thermal stabilities, structural flexibility, etc. In particular, the hydrogen-containing sulfonimide (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide anion {[N(SO2CF2H) (SO2CF3)]-, DFTFSI-}, stands out owing to its suppressed anion mobility and superior electrochemical properties. We herein report the structural analyses of potassium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide {K [N(SO2CF2H) (SO2CF3)], KDFTFSI} by virtue of single crystal X-ray diffraction and computational approaches. Our results reveal that KDFTFSI crystallizes in a orthorhombic cell (space group: Pbcn) comprising of cationic and anionic layers, which is similar to the conventional sulfonimide salt, potassium bis(trifluoromethanesulfonyl)imide {K [N(SO2CF3)2], KTFSI}. Gas-phase density functional theory calculations show that the conversion from trans to cis DFTFSI- anions is hindered due to the presence of stabilizing intramolecular H-bonding interactions in the trans conformer; yet interaction with K+ substantially minimizes the energy difference between the two conformers due to the formation of strong tridentate K+ coordination with oxygen atoms in the cis KDFTFSI. This work is anticipated to provide further understanding on the structure-property relations of hydrogenated sulfonimide anions, and thus inspire the structural design of new anions for battery research.

Keywords: (Difluoromethanesulfonyl)(trifluoromethyanesulfonyl)imide; Cation-anion interaction; Crystal structure; Dihedral angle; Hydrogen-containing sulfonimide anion.