Antioxidants improve β-cypermethrin degradation by alleviating oxidative damage and increasing bioavailability by Bacillus cereus GW-01

Environ Res. 2023 Nov 1;236(Pt 1):116680. doi: 10.1016/j.envres.2023.116680. Epub 2023 Jul 25.

Abstract

Microbial degradation of pesticide residues has the potential to reduce their hazards to human and environmental health. However, in some cases, degradation can activate pesticides, making them more toxic to microbes. Here we report on the β-cypermethrin (β-CY) toxicity to Bacillus cereus GW-01, a recently described β-CY degrader, and effects of antioxidants on β-CY degradation. GW-01 exposed to β-CY negatively affected the growth rate. The highest maximum specific growth rate (μm) appeared at 25 mg/L β-CY. β-CY induced the oxidative stress in GW-01. The activities of superoxide dismutase (SOD), catalyse (CAT), and glutathione-S-transferase (GST) were significantly higher than that in control (p < 0.01); but they are decreased as growth phase pronged, which is contrary to the β-CY degradation by GW-01 cells obtaining from various growth phase. Ascorbic acid (Vc), tea polyphenols (TP), and adenosine monophosphate (AMP) improved the degradation through changing the physiological property of GW-01. TP and AMP prompted the expression of gene encoding β-CY degradation in GW-01, while Vc does the opposite. Biofilm formation was significantly inhibited by β-CY, while was significantly enhanced by certain concentrations of TP and AMP (p < 0.05); while cell surface hydrophobicity (CSH) was negatively associated with β-CY concentrations from 25 to 100 mg/L, and these 4 antioxidants all boosted the CSH. Cells grown with β-CY had lower levels of saturated fatty acids but increased levels of some unsaturated and branched fatty acids, and these antioxidants alleviated the FA composition changes and gene expression related with FA metabolism. We also mined transcriptome analyses at lag, logarithmic, and stationary phases, and found that β-CY induced oxidative stress. The objective of this study was to elaborate characteristics in relation to the microbial resistance of pesticide poisoning and the efficiency of pesticide degradation, and to provide a promising method for improving pesticide degradation by microbes.

Keywords: Antioxidants; Biofilm; Cell surface hydrophobicity; Fatty acid; β-cypermethrin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Monophosphate / metabolism
  • Adenosine Monophosphate / pharmacology
  • Antioxidants* / metabolism
  • Antioxidants* / pharmacology
  • Bacillus cereus / metabolism
  • Biological Availability
  • Fatty Acids
  • Humans
  • Oxidative Stress
  • Pesticides* / toxicity

Substances

  • Antioxidants
  • cypermethrin
  • Pesticides
  • Fatty Acids
  • Adenosine Monophosphate