Mapping high-resolution energy consumption CO2 emissions in China by integrating nighttime lights and point source locations

Sci Total Environ. 2023 Nov 20:900:165829. doi: 10.1016/j.scitotenv.2023.165829. Epub 2023 Jul 26.

Abstract

High-resolution CO2 emission inventories are essential to accurately assess spatiotemporal patterns of carbon emissions, analyze factors affecting carbon emissions, and develop sound emission reduction policies. The top-down approach is often used to map CO2 emissions from energy consumption due to its simplicity. However, the spatial proxy variables commonly used in this method, such as nighttime light (NL), land use, and population, are difficult to reflect the spatial distribution of CO2 emissions from large point sources. Therefore, this study uses the active fire product provided by Visible Infrared Imaging Radiometer Suite (VIIRS) sensors on Suomi National Polar-Orbiting Partnership (Suomi-NPP) satellite to extract the location of industrial heat sources in China, and then develops an improved CO2 emission estimation model by integrating industrial heat sources, Global Energy Monitor (GEM) power plant location and nighttime lights. The model is used to map CO2 emissions from energy consumption at a resolution of 1 km*1 km from 2012 to 2019 in China. It is found that the overall accuracy of the model is greatly improved at the provincial level, the R2 value is >0.75, and RMSE is distributed in 40-110 Mt. At the grid level, the improved model allocates more carbon emissions to the grid where the point source is located, which makes the spatial distribution of CO2 emissions more reasonable.

Keywords: CO(2) emissions; China; Emission inventory; Point source; Spatiotemporal pattern; VIIRS.