Potential impact of bacteria on the transport of PFAS in porous media

Water Res. 2023 Sep 1:243:120350. doi: 10.1016/j.watres.2023.120350. Epub 2023 Jul 15.

Abstract

The transport and fate of per- and poly-fluoroalkyl substances (PFAS) in soil and groundwater is a topic of critical concern. A number of factors and processes may influence the transport and fate of PFAS in porous media. One factor that has received minimal attention to date is the impact of bacteria on the retention and transport of PFAS, which is the focus of this current study. The first part of this work comprised a critical review of prior studies to delineate observed PFAS-bacteria interactions and to summarize the mechanisms of PFAS sorption and retention by bacteria. Retention of PFAS by bacteria can occur through sorption onto cell surfaces and/or by incorporation into the cell interior. Factors such as the molecular structure of PFAS, solution chemistry, and bacterial species can affect the magnitude of PFAS sorption. The influence of bacteria on the retention and transport of PFAS was investigated in the second part of the study with a series of batch and miscible-displacement experiments. Batch experiments were conducted using Gram-negative Pseudomonas aeruginosa and Gram-positive Bacillus subtilis to quantify the sorption of perfluorooctane sulfonic acid (PFOS). The results indicated that both bacteria showed strong adsorption of PFOS, with no significant difference in adsorption capacity. Miscible-displacement experiments were then conducted to examine the retention and transport of PFOS in both untreated sand and sand inoculated with Pseudomonas aeruginosa or Bacillus subtilis for 1 and 3 days. The transport of PFOS exhibited greater retardation for the experiments with inoculated sand. Furthermore, the enhanced sorption was greater for the 3-day inoculation compared to the 1-day, indicating that biomass is an important factor affecting PFOS transport. A mathematical model representing transport with nonlinear and rate-limited sorption successfully simulated the observed PFOS transport. This study highlights the need for future studies to evaluate the effect of bacteria on the transport of PFAS in soil and groundwater.

Keywords: Bacteria; PFAS; PFOS; Sorption; Transport.

Publication types

  • Review

MeSH terms

  • Bacteria
  • Fluorocarbons* / analysis
  • Porosity
  • Sand*
  • Soil / chemistry

Substances

  • Sand
  • Soil
  • perfluorooctane sulfonic acid
  • Fluorocarbons