Global investigation of lake habitat coupling by fishes

Oecologia. 2023 Jul;202(3):617-628. doi: 10.1007/s00442-023-05424-8. Epub 2023 Jul 26.

Abstract

Habitat coupling, where consumers acquire resources from different habitats, plays an important role in ecosystem functioning. In this study, we provide a global investigation of lake habitat coupling by freshwater fishes between littoral (nearshore) and pelagic (open water) zones and elucidate the extent to which magnitude of coupling varies according to environmental context and consumer traits. We consider the influence of lake factors (surface area, depth, shoreline complexity, and annual temperature), relative trophic position of consumers, fish community species richness, and fish morphological traits on habitat coupling by fishes. Using a worldwide dataset consisting of fish stable isotope values (δ13C and δ15N), we developed an index of habitat coupling, and used Bayesian hierarchical and non-hierarchical beta regressions to estimate the effects of environmental lake context and morphological traits on habitat coupling by fishes. Our results show high rates of habitat coupling among fishes globally with marked taxonomic differences in the magnitude and variation. Habitat coupling was higher in lower elevation lakes and in regions characterized by relatively colder climates, whereas other environmental context factors had little or no effects on habitat coupling. Furthermore, habitat coupling was associated with several locomotion and feeding traits, but independent from species maximum body length. Overall, we highlight the prevalence of multiple resources supporting fish populations and suggest future research identify implications to ecosystem functioning that may result from alterations to habitat coupling by fishes.

Keywords: Carbon; Consumer; Functional traits; Littoral; Stable isotopes.

MeSH terms

  • Animals
  • Bayes Theorem
  • Ecosystem*
  • Fishes
  • Lakes*
  • Water

Substances

  • Water