Reservoirs as high-efficacy sentinels of regional atmospheric pollution and precipitation: magnetic and chemical evidence from a typical subtropical reservoir in South China

Environ Sci Pollut Res Int. 2023 Aug;30(40):92507-92524. doi: 10.1007/s11356-023-28776-3. Epub 2023 Jul 25.

Abstract

While there is a general sense that reservoirs can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. Here multiple-proxy analyses including 210Pb, grain size, heavy metals, magnetic parameters, and spheroidal carbonaceous particles (SCPs) were conducted for a sediment core from a typical subtropical reservoir in South China (Huangkeng Reservoir). 210Pb dating revealed that the core spans from ~ 1964 to 2019, with the sedimentary rate increasing during recent years. The sedimentary environment was mainly influenced by natural process (especially precipitation), along with the accumulation of Cr, Ni, Cu, V, As, Sb, and Co and most magnetic particles. However, four heave metals (Cd, Pb, Tl, and Zn) were found mainly from atmospheric deposition from industrial/agricultural activities in Huizhou City, which was also indicated by SCPs, S-ratio, and χARM/SIRM. According to temporal variation of SCPs, the atmospheric pollution history of nearby city (Huizhou City as the most close one) from 1964 was reconstructed. The study shows that reservoir sediments, especially in areas with few or no natural lakes, are high-efficacy and high-resolution achieves for research on environmental evolution in the Anthropocene related to global change and intensifying human activities.

Keywords: Atmospheric pollution; Environmental magnetism; Heavy metal; Reservoir; South China; Spheroidal carbonaceous particle.

MeSH terms

  • China
  • Environmental Monitoring
  • Geologic Sediments / analysis
  • Humans
  • Lead / analysis
  • Magnetic Phenomena
  • Metals, Heavy* / analysis
  • Risk Assessment
  • Water Pollutants, Chemical* / analysis

Substances

  • Lead
  • Metals, Heavy
  • Water Pollutants, Chemical