Bottlebrush Polymers at Liquid Interfaces: Assembly Dynamics, Mechanical Properties, and All-Liquid Printed Constructs

ACS Nano. 2023 Aug 8;17(15):14731-14741. doi: 10.1021/acsnano.3c02684. Epub 2023 Jul 25.

Abstract

Bottlebrush polymer surfactants (BPSs), formed by the interfacial interactions between bottlebrush polymers (BPs) with poly(acrylic acid) side chains dissolved in an aqueous phase and amine-functionalized ligands dissolved in the oil phase, assemble and bind strongly to the fluid-fluid interface. The ratio between NBB (backbone degree of polymerization) and NSC (side chain degree of polymerization) defines the initial assembly kinetics, interface packing efficiency, and stress relaxation. The equilibrium interfacial tension (γ) increases when NBB < NSC, but decreases when NBBNSC, correlating to a pronounced change in the effective shape of the BPs from being spherical to worm-like structures. The apparent surface coverage (ASC), i.e., the interfacial packing efficiency, decreases as NBB increases. The dripping-to-jetting transition of an injected polymer solution, as well as fluorescence recovery after photobleaching experiments, revealed faster initial assembly kinetics for BPs with higher NBB. Euler buckling of BPS assemblies with different NBB values was used to characterize the stress relaxation behavior and bending modulus. The stress relaxation behavior was directly related to the ASC, reflecting the strong influence of macromolecular shape on packing efficiency. The bending modulus of BPSs decreases for NBB < NSC, but increased when NBBNSC, showing the effect of molecular architecture and multisite anchoring. All-liquid printed constructs with lower NBB BPs yielded more stable structured liquids, underscoring the importance of macromolecular packing efficiency at fluid interfaces. Overall, this work elucidates fundamental relationships between nanoscopic structures and macroscopic properties associated with various bottlebrush polymer architectures, which translate to the stabilization of all-fluidic printed constructs.

Keywords: Bottlebrush polymer surfactants; Jamming; Liquid printing; Soft nanoparticles; Stress relaxation.