The brown planthopper NlDHRS11 is involved in the detoxification of rice secondary compounds

Pest Manag Sci. 2023 Dec;79(12):4828-4838. doi: 10.1002/ps.7681. Epub 2023 Aug 7.

Abstract

Background: The brown planthopper (Nilaparvata lugens, BPH) is the most destructive serious pest in rice production. Resistant varieties are effective means to defend against BPH, but the impact of the ingestion of resistant rice on BPH transcriptional regulation is still unclear. Here, we explore the molecular basis of the regulation by BPH feeding on resistant rice.

Results: BPH nymphs preferentially selected susceptible rice TN1 at 24 h after release in a choice test. Feeding on resistant rice IR56 under nonselective conditions increased mortality, decreased growth rate, and prolonged the molting time of BPH. Transcriptomic sequencing revealed 38 dysregulated genes, including 31 down-regulated and seven up-regulated genes in BPH feeding on resistant rice for 7 days compared with feeding on susceptible rice TN1. These genes were mainly involved in the pathways of growth and development, metabolism, energy synthesis, and transport. Finally, we showed that the toxicities of rice defensive compounds to BPH were dose-dependent, and silencing of the BPH gene dehydrogenase/reductase SDR family member 11 (NlDHRS11) increased sensibility to the rice secondary compounds ferulic acid and resorcinol.

Conclusion: The adaption of BPH feeding on resistant rice is orchestrated by dynamically regulating gene expressions, and NlDHRS11 is a gene involved in the detoxification of plant defensive chemicals. The current work provides new insights into the interaction between insects and plants, and will help to develop novel BPH control strategies. © 2023 Society of Chemical Industry.

Keywords: RNA interference; brown planthopper; detoxification; rice resistance; secondary compounds.

MeSH terms

  • Animals
  • Gene Expression Regulation
  • Genes, Plant
  • Hemiptera* / physiology
  • Oryza* / chemistry