Modulating the Active Hydrogen Adsorption on Fe─N Interface for Boosted Electrocatalytic Nitrate Reduction with Ultra-Long Stability

Adv Mater. 2023 Nov;35(46):e2304695. doi: 10.1002/adma.202304695. Epub 2023 Oct 15.

Abstract

The electrocatalytic reduction of nitrate (NO3 - ) to nitrogen (N2 ) is an environmentally friendly approach for efficient N-cycle management (toward a nitrogen-neutral cycle). However, poor catalyst durability and the competitive hydrogen evolution reaction significantly impede its practical application. Interface-chemistry engineering, utilizing the close relationship between the catalyst surface/interface microenvironment and electron/proton transfer process, has facilitated the development of catalysts with high intrinsic activity and physicochemical durability. This study reports the synthesis of a nitrogen-doped carbon-coated rice-like iron nitride (RL-Fe2 N@NC) electrocatalyst with excellent electrocatalytic nitrate-reduction reaction activity (high N2 selectivity (≈96%) and NO3 - conversion (≈86%)). According to detailed mechanistic investigations by in situ tests and theoretical calculations, the strong hydrogenation ability of iron nitride and enhanced nitrate enrichment of the system synergistically contribute to the rapid hydrogenation of nitrogen-containing species, increasing the intrinsic activity of the catalyst and reducing the occurrence of the competing hydrogen-evolution side reaction. Moreover, RL-Fe2 N@NC shows excellent stability, retaining good NO3 - -to-N2 electrocatalysis activity for more than 40 cycles (one cycle per day). This paper could guide the interfacial design of Fe-based composite nanostructures for electrocatalytic nitrate reduction, facilitating a shift toward nitrogen neutrality.

Keywords: electrocatalytic nitrate reduction; hydrogenation ability; interface chemistry; nitrogen-neutral cycle.