Low Ni and Co olivine in Chang'E-5 basalts reveals the origin of the young volcanism on the Moon

Sci Bull (Beijing). 2023 Sep 15;68(17):1918-1927. doi: 10.1016/j.scib.2023.07.020. Epub 2023 Jul 15.

Abstract

Mare basalts returned by the Chang'E-5 (CE5) mission extend the duration of lunar volcanism almost one billion years longer than previously dated. Recent studies demonstrated that the young volcanism was related neither to radiogenic heating nor to hydrous melting. These findings beg the question of how the young lunar volcanism happened. Here we perform high-precision minor element analyses of olivine in the CE5 basalts, focusing on Ni and Co. Our results reveal that the CE5 basalt olivines have overall lower Ni and Co than those in the Apollo low-Ti basalts. The distinctive olivine chemistry with recently reported bulk-rock chemistry carries evidence for more late-stage clinopyroxene-ilmenite cumulates of the lunar magma ocean (LMO) in the CE5 mantle source. The involvement of these Fe-rich cumulates could lower the mantle melting temperature and produce low MgO magma, inhibiting Ni and Co partitioning into the magma during lunar mantle melting and forming low Ni and Co olivines for the CE5 basalts. Moreover, the CE5 olivines show a continuous decrease of Ni and Co with crystallization proceeding. Fractional crystallization modeling indicates that Co decreasing with crystallization resulted from CaO and TiO2 enrichment (with MgO and SiO2 depletion) in the CE5 primary magma. This further supports the significant contribution of late-stage LMO cumulates to the CE5 volcanic formation. We suggest that adding easily melted LMO components resulting in mantle melting point depression is a key pathway for driving prolonged lunar volcanism. This study highlights the usefulness of olivine for investigating magmatic processes on the Moon.

Keywords: Chang’E-5; Lunar magma ocean; Mare basalts; Minor elements; Olivine.