Optimization of Intercalated 2D BiOCl Sheets into Bi2WO6 Flowers for Photocatalytic NH3 Production and Antibiotic Pollutant Degradation

ACS Appl Mater Interfaces. 2023 Aug 9;15(31):37540-37553. doi: 10.1021/acsami.3c07489. Epub 2023 Jul 24.

Abstract

Photocatalytic N2 fixation is a complex reaction, thereby prompting researchers to design and analyze highly efficient materials. Herein, one-pot hydrothermal Bi2WO6-BiOCl (BW-BiOCl) heterojunctions were synthesized by varying the molar ratio of tungsten: chlorine precursor. Major morphological transformations in BiOCl were observed wherein it turned from thick sheets ∼230 nm in pure BiOCl to ∼30 nm in BW-BiOCl. This was accompanied by extensive growth of {001} facets verified from X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) analyses. A p-n heterojunction was formed between Bi2WO6 and BiOCl evidenced via photoluminescence (PL), time-resolved photoluminescence (TRPL), photocurrent response, and electrochemical impedance spectroscopy (EIS) analyses. The formation of heterojunction between Bi2WO6 and BiOCl led to the reduction of the work function in the BW-BiOCl 0.25 hybrid confirmed via ultraviolet photoelectron spectroscopy (UPS) analysis. BW-BiOCl 0.25 could produce ammonia up to 345.1 μmol·L-1·h-1 owing to the formation of a robust heterojunction with an S-scheme carrier transport mechanism. Recycle tests resulted in no loss in N2 reduction activities with post-catalytic analysis, showcasing the high stability of the synthesized heterojunction. Novel performance was owed to its excellent chemisorption of N2 gas on the heterojunction surface verified by N2-temperature programmed desorption (TPD). BW-BiOCl 0.25 also displayed a superior rate constant of 3.03 × 10-2 min-1 for 90 min CIP degradation time, higher than pristine BiOCl and Bi2WO6. Post-photocatalytic Fourier transform infrared (FTIR) spectroscopy of BW-BiOCl 0.25 revealed the presence of C-H stretching peaks in the range of 2850-2960 cm-1 due to adsorbed CIP and methanol species in CIP degradation and N2 fixation, respectively. This also confirmed the enhanced adsorption of reacting species onto the heterojunction surface.

Keywords: Bi2WO6; BiOCl; ammonia; facets; photocatalytic nitrogen fixation.