Effect of different synthesis methodologies on the adsorption of iodine

Heliyon. 2023 Jun 3;9(6):e16975. doi: 10.1016/j.heliyon.2023.e16975. eCollection 2023 Jun.

Abstract

Radioactive nuclides such as cesium, ruthenium, and iodine are difficult to remove in radioactive wastewater, which could be removed by coprecipitation of special chemical precipitants. In this study, dynamic Cu/Ag-mordenite (Cu/Ag-MOR) material was synthesized to be treated as the precipitant to selectively adsorb the iodine ion (I-) through controlled chemisorption combined with physical adsorption. XRD, XPS, and FTIR characterization demonstrated the successful modification of the MOR carrier surface by Cu/Ag particles and the high selectivity of the active component Cu (I) on the dynamic Cu/Ag-MOR material. SEM, TEM, and BET methods were used to characterize the Cu/Ag-MOR material, demonstrating these results: the MOR carried a stable porous structure, which allowed the silver to be well dispersed on its surface. The silver improved the copper distribution by being well-coated by the copper species. Furthermore, the analysis of the factors influencing the chemical plating of copper showed that the pH, the concentration of EDTA-2Na and the temperature all influenced the deposition rate of Cu2O. The activation energy for Cu2O deposition in dynamic Cu/Ag-MOR was 20.31 kJ/mol. The highest removal of I- in the presence of dynamic Cu/Ag-MOR could reach 99.1% in the adsorption tests. The adsorption kinetics was under a proposed second-order model, with chemisorption being the controlling step of the reaction. The adsorption/desorption experiments demonstrated the reusability of the nano-sorbent. It was also demonstrated that dynamic Cu/Ag-MOR materials showed good applicability in complex situations where multiple pollutants co-exist.

Keywords: Cu/ag-MOR; Cu2O; Cu2O deposition Rate; Dynamic chemical plating; Iodine ion adsorption.