Solubility, Crystallization, and Characterization of Cytidine Sulfate

ACS Omega. 2023 Jul 7;8(28):25288-25294. doi: 10.1021/acsomega.3c02501. eCollection 2023 Jul 18.

Abstract

Cytidine is an important kind of nucleoside that can be applied to drug development and food industry. Cytidine sulfate is one of its popular forms, which is promising as a medicinal intermediate, especially in antiviral and antitumor drugs. Product refining is the key point of industrial development, and crystallization is a significant way of refining. In this work, the solubility of cytidine sulfate in pure water from 278.15 to 328.15 K and in water-ethanol binary solvents at 298.15 K was measured by the UV spectroscopic method. The solubility data were correlated with temperature and solvent composition using the modified Apelblat, van't Hoff, and CNIBS/R-K equations. On this basis, we investigated and compared three crystallization processes, and the coupling method was developed to prepare crystals with a large particle size, concentrated distribution, and high yield and packing density. In addition, the structure and stability of the products were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption analysis. It was found that cytidine sulfate has only one crystal form in our research process, and the product of coupling crystallization is stable and favorable for industrial development.