Thermoplastic starch (TPS)-based composite films for wastewater treatment: synthesis and fundamental characterization

BMC Chem. 2023 Jul 24;17(1):84. doi: 10.1186/s13065-023-00998-z.

Abstract

Modification of starch is a potential basic research aiming to improve its water barrier properties. The general purpose of this study is to manufacture cross-linked iodinated starch citrate (ISC) with a degree of substitution (DS) ≈ 0.1 by modifying native corn starch with citric acid in the presence of iodine as an oxidizing agent. Thermoplastic starch (TPS) was generated with urea as a plasticizer and blended with various concentrations of ISC of (2, 4, 6%) (wt/wt) to obtain (UTPS/ISC2, UTPS/ISC4, and UTPS/ISC6). Nanocomposite film was formed from UTPS/ISC2 in presence of stabilized iodinated cellulose nanocrystals UTPS/ISC2/SICNCs via gelatinization at a temperature of 80ºC. Water solubility and water vapor release were studied amongst the water barrier features. The fabricated starch-based composite films were evaluated utilizing Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electronic Microscope analysis (SEM), surface area, and tensile measurements. The adsorption of crystal violet (CV) dye onto produced samples was examined in an aqueous solution. The findings revealed that the UTPS/ISC2/ISCNCs has 83% crystal violet elimination effectiveness. Moreover, the adsorption isotherms were assessed and figured out to vary in the order of Langmuir > Temkin > Freundlich > Dubinin-Radushkevich.

Keywords: Adsorption; Cellulose nanocrystals; Crystal violet; Starch citrate; Thermoplastic starch.